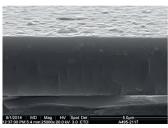


SISTRAL®-ULTRAFINE

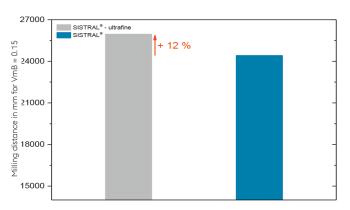
The nanostructured "ultrafine" coating for high-performance metal cutting


The nanostructured SISTRAL®-ultrafine coating represents a further new development from the "ultrafine" coating series, specially developed for the high speed cutting (HSC) of very abrasive or hard materials (steel >54 HRC) in dry, high-speed applications. The ultrafine technology allows a considerable reduction of the surface roughness.


APPLICATIONS

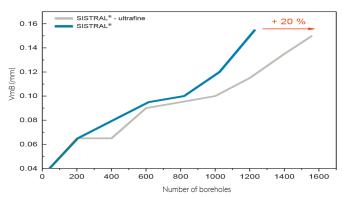
Cutting	Hard, dry and high-performance cutting Drilling, turning, sawing
Other	Other areas of application which demand extremely high resistance towards oxidation and wear as well as high hot hardness.

COATING PROPERTIES


Hardness	2,500 ± 300 HV (possible increase of hardness up to >3,000 HV in application)	
Max. application temperature	900 °C / 1,650 °F	
Coating thicknesses	23 µm	
Colour	anthracite blue	

Scanning electron microscope fracture patterns of SISTRAL®-ultrafine (left) and SISTRAL® coatings (right).

The reduction of macroparticle deposition results in a smoother surface layer and low-defect layer structure. This provides a higher wear resistance and improved durability due to friction reduction, especially for hard, dry and high-performance cutting.



Maximally achieved milling distance for a wear mark width of 0.15 mm when hard milling of Vanadis 10 (62 HRC).

Cutting parameters:

 $v_c = 100 \text{ m/min, } v_f = 1,337 \text{ mm/min,}$

 $a_p = 10 \text{ mm}, a_e = 0.02 \text{ mm}$

Wear mark width as a function of the number of boreholes reached in 1.4571. Drilling parameters:

 $\rm v_c$ =80 m/min, $\rm v_f$ =0.08 mm/rev, $\rm a_p$ =20 mm, Avilub 10 %