

EXXTRAL®-ULTRAFINE

The innovative AITIN high-performance coating for cutting tools

The aluminium titanium nitride-based EXXTRAL®-ultrafine coating was specially developed for hard, dry and highspeed machining. Through the use of ultrafine technology, EXXTRAL®-ultrafine exhibits what is for arc coatings an exceptionally smooth coating surface. This results in reduced formation of build-up on cutting edges during the cutting and also fosters improved chip removal. The lowdefect layer structure of the EXXTRAL®-ultrafine layer, as well as its high hardness and excellent adhesive strength, provides significantly improved durability with dry cutting as compared to the conventional EXXTRAL® arc layer.

COATING PROPERTIES

Hardness	3,300 ±300 HV	
Coating thickness	2-3 µm	
Max. operating temperature	800 °C / 1.470 °F	
Colour	Anthracite	
Coating composition	AlTiN-based	

APPLICATIONS

C	ı++i	na

Preferred areas of application for the EXXTRAL®-ultrafine layer are thus metal cutting tasks such as milling, drilling and turning, which are performed under high mechanical and thermal stresses up to max. 800 °C.

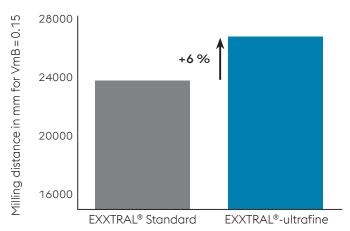
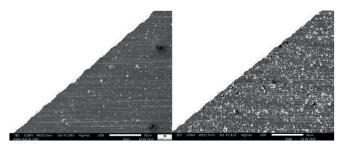



Fig. 1: Maximally achieved milling distance for a wear mark width of 0.15 mm for EXXTRAL®-ultrafine compared to EXXTRAL® for hard milling of Vanadis 10 (62 HRC). Cutting parameters: $v_c = 100 \text{ m/min}$, $v_f = 1337 \text{ mm/min}$, $a_p = 10 \text{ mm}, a_p = 0.02 \text{ mm}.$

Scanning electron microscope images of a milling cutter coated with EXXTRAL®-ultrafine (left) and EXXTRAL® (right).

www.eifeler.com